

BACHELOR'S THESIS

Development of MakerSpace Management System
Group BO17-G14

Thomas Bergby
Simon Chen Dybvik
Nicolai Naglestad
Espen Ottar Skjeggestad

16/05/2017

Computer Science / Digital Media Production / Information Systems
Faculty of Computer Science

HØGSKOLEN I ØSTFOLD
Avdeling for Informasjonsteknologi
Remmen
1757 Halden
Telefon: 69 21 50 00
URL: www.hiof.no

BACHELOROPPGAVE

Prosjektkategori:
Bacheloroppgave

X Fritt tilgjengelig

Omfgang i studiepoeng:
20

(16/05
2017)

Fritt tilgjengelig etter

Fagområde:
Informasjonsteknologi

Tilgjengelig etter avtale med
oppdragsgiver

Tittel:
Utvikling av MakerSpace Management System

Dato:
May 16, 2017

Forfatterere:
Thomas Magelssen Bergby, Simon Chen Dybvik, Nicolai Na-
glestad, Espen Ottar Skjeggestad

Veileder:
Børre Stenseth

Avdeling / Program:
Avdeling for Informasjonsteknologi (alle programmer)

Gruppenummer:
BO17-G14

Oppdragsgiver:
HiØ/IT (MakerSpace)

Kontaktperson hos oppdragsgiver:
Espen Teigen

Ekstrakt:
This report describes the development of an inventory system for the Østfold University College’s
MakerSpace. This project is to give the MakerSpace a tool to manage its ever growing inventory.
The system will be open source and it will be made available for all Makerspaces that wish to use
it. The development process focused on using the incremental method to achieve this goal.
Throughout the development process the group has used technologies and programs that are
unfamiliar to them. This was both to learn about these new technologies and to gain experience
using systems that are becoming more and more popular.

3 emneord: REST API / NOSQL
Inventar
Maker Movement

Abstract

This report describes the development of an inventory system for the
Østfold University College’s MakerSpace. This project is to give the
MakerSpace a tool to manage its ever growing inventory. The system
will be open source and it will be made available for all Makerspaces
that wish to use it. The development process focused on using the
incremental method to achieve this goal.

Throughout the development process the group has used technolo-
gies and programs that are unfamiliar to them. This was both to learn
about these new technologies and to gain experience using systems
that are becoming more and more popular.

i

Acknowledgements

First and foremost, we would like to express our gratitude to our men-
tor, Børre Stenseth, for valuable feedback, advice and guidance throug-
hout the project.

We would also like to express our gratitude to our project owner,
Espen Teigen, for ideas during all stages of the project.

Finally, we want to thank Gunnar Misund, Evelien Jacobs and all of
our testers.

Last but not least we would also like to thank the open source com-
munity.

ii

Contents

Abstract i

Acknowledgements ii

List of Figures viii

1 Introduction 1
1.1 The Group . 2

1.1.1 Thomas Magelssen Bergby 2
1.1.2 Simon Chen Dybvik 2
1.1.3 Nicolai Naglestad 3
1.1.4 Espen Ottar Skjeggestad 3

1.2 Employer . 4
1.3 Task . 4

1.3.1 Purpose . 4
1.3.2 Project delivery / Prototype 5
1.3.3 Documentation . 5
1.3.4 Method . 5

1.4 Report structure . 6
1.4.1 Introduction . 6
1.4.2 Glossary . 6
1.4.3 Analysis . 6
1.4.4 Design . 6
1.4.5 Implementation . 7
1.4.6 Testing . 7
1.4.7 Discussion and Evaluation 7
1.4.8 Conclusion . 7

1.5 Project Plan . 8
1.5.1 Main Deliveries . 8
1.5.2 Milestones . 8

iii

CONTENTS CONTENTS

2 Glossary 9
2.1 MakerSpace . 10
2.2 Program tools . 10

2.2.1 MongoDB . 10
2.2.2 Node.js . 10
2.2.3 CRUD . 11
2.2.4 Postman . 11

2.3 Collaboration tools . 12
2.3.1 Git and GitHub . 12
2.3.2 Trello . 12
2.3.3 LATEX . 13

3 Analysis 14
3.1 The task . 15
3.2 Open Source . 15

3.2.1 MIT License . 15
3.2.2 MakerSpace Management System MIT License . . 15
3.2.3 Security . 16
3.2.4 Cost . 16
3.2.5 Support and maintainability 17

3.3 The Security Aspect . 17
3.3.1 Using existing systems (HTTP Auth, OAuth2, Etc.) . 17
3.3.2 Custom system . 17
3.3.3 Internet vs Intranet 18

3.4 The Technology . 18
3.4.1 Front-end . 18

3.4.1.1 JavaScript / jQuery 18
3.4.1.2 HTML5 / CSS3 19
3.4.1.3 PHP7 . 19

3.4.2 Back-end . 19
3.4.2.1 MongoDB 19
3.4.2.2 Node.js / Mongoose 20
3.4.2.3 REST API 20
3.4.2.4 Linux Apache 21

3.5 Users . 22
3.5.1 User Stories . 22

4 Design 24
4.1 What is already out there? 25

iv

CONTENTS CONTENTS

4.2 Site layout . 25
4.3 MongoDB Models . 28

4.3.1 Items . 29
4.3.1.1 Node.js Model 29
4.3.1.2 JSON Model 30

4.3.2 Category . 31
4.3.2.1 Node.js Model 31
4.3.2.2 JSON Model 31

4.3.3 Tag . 32
4.3.3.1 Node.js Model 32
4.3.3.2 JSON Model 32

4.3.4 Location/Locale . 33
4.3.4.1 Node.js Model 33
4.3.4.2 JSON Model 33

5 Implementation 34
5.1 Flowcharts . 35
5.2 First iteration . 37

5.2.1 Website (Front-end) 37
5.2.1.1 Design . 37
5.2.1.2 Technology 38

5.2.2 Node.js API (Back-end) 38
5.3 Second iteration . 39

5.3.1 Website (Front-end) 39
5.3.2 Back-end . 40

5.4 Third iteration . 40
5.4.1 Website (Front-end) 40

5.4.1.1 General changes 40
5.4.1.2 Search field 41
5.4.1.3 Item page 41
5.4.1.4 Administrator page 43

5.4.2 Back-end . 43
5.5 Fourth iteration . 44

5.5.1 Website (Front-end) 44
5.5.1.1 General changes 44
5.5.1.2 Item page 45
5.5.1.3 Administrator page 46

5.5.2 Back-end . 47

v

CONTENTS CONTENTS

6 Testing 48
6.1 Why do a user test . 49
6.2 Test goal . 49
6.3 Methods . 49

6.3.1 Usability Testing . 49
6.4 Target Audience . 49

6.4.1 User Types . 50
6.4.1.1 Student . 50
6.4.1.2 Student Assistant 50
6.4.1.3 Employee / Admin of MakerSpace 50

6.5 Test Execution . 51
6.5.1 Roles . 51

6.5.1.1 User . 51
6.5.1.2 Test Leader 51

6.5.2 Setup . 51
6.5.3 Tasks . 51
6.5.4 After interview? . 52

6.6 Results . 52
6.6.1 Interview . 52

7 Discussion and Evaluation 54
7.1 Design . 55
7.2 Implementation . 55
7.3 Usability Test . 56
7.4 The Project Method . 56
7.5 Future . 56

7.5.1 Front-end . 56
7.5.1.1 General Design 56
7.5.1.2 Design Item page 57
7.5.1.3 Implement new functions 57

7.5.2 Back-end . 57

8 Conclusion 58

9 Bibliography 59

A Raw Test Results 62

B API Calls and Output 72
B.1 Getting all items . 73

vi

CONTENTS CONTENTS

B.2 Get a single item . 75
B.3 Updating a item . 76
B.4 Deleting a item . 77
B.5 Creating a item . 78

C Project Contract 80

D Group Contract 84

E Confirmation of Group Change 88

F Meeting notes 90
F.1 Meeting 24-1-17 . 91
F.2 Meeting 31-1-17 . 92
F.3 Meeting 1-2-17 . 93
F.4 Meeting 7-2-17 . 94
F.5 Meeting 14-2-17 . 95
F.6 Meeting 21-2-17 . 96
F.7 Meeting 28-2-17 . 97
F.8 Meeting 28-2-17 . 98
F.9 Meeting 14-3-17 . 99
F.10 Meeting 21-3-17 . 100
F.11 Meeting 4-4-17 . 101
F.12 Meeting 26-4-17 . 102

vii

List of Figures

2.1 Screenshot of Postman interface. 11
2.2 Trello bord . 12
2.3 Graph about document complexity. 13

4.1 Wireframe for the landing page 26
4.2 Wireframe for the item page 27

5.1 Flowchart for adding an item 35
5.2 Flowchart for searching for an item 36
5.3 Screenshot of the landing page English (first iteration) . . 37
5.4 Screenshot of the landing page Norwegian (first iteration) 38
5.5 Screenshot of the landing page (second iteration) 39
5.6 Screenshot of the landing page (third iteration) 40
5.7 Screenshot of the landing page with search (third iteration) 41
5.8 Screenshot of the item page of a specific item (third itera-

tion) . 42
5.9 Screenshot of the administrator page (third iteration) . . . 43
5.10 Screenshot of the landing page with categories (fourth ite-

ration) . 44
5.11 Screenshot of the item page (fourth iteration) 45
5.12 Screenshot of the item page as a user (fourth iteration) . . 46
5.13 Screenshot of the administrator page (fourth iteration) . . 46

D.1 Additional signature from new member 87

viii

Chapter 1

Introduction

This chapter gives an introduction of the group, employer, the task and
how the group plans to execute the task.

1

1.1. THE GROUP CHAPTER 1. INTRODUCTION

1.1 The Group

The group consist of 4 third year students. Initially the group consis-
ted of 3 members, but a 4th member joined later in the project. (See
appendix E) The group is divided into 3 different studyfields 1 Infor-
matics, 1 Digital Media Production and 2 Information Systems. Most
of the group has worked with each other on multiple occasions, both
in student organizations or projects. 3 members of the group also live
together in student collectives. All members have a high interest in the
project and MakerSpace, where all of them spend a lot of time.

1.1.1 Thomas Magelssen Bergby

A student who has been interested in everything regarding IT and techno-
logy since he was a kid. Thomas has been a leader for “Lær Kidsa Ko-
ding” (A group of students who teach coding for kids) and a leader for
student assistants in Web-Development and JavaScript courses.

Thomas studies Informatics, and has gained skills within JavaScript,
Java, PHP, CSS, Linux and Python. During his studies, he has taken
courses such as Algorithms and Data-Structures, Software Engineer-
ing, Object Oriented Programming and Android Programming.

He also enjoys traveling, and hopes to eventually get a job in the
United Kingdom or the USA.

1.1.2 Simon Chen Dybvik

Simon has been interested in technology his whole life. As a curious
child, he often disassembled products to see what’s inside and how it
worked. He is broadly interested in Apple and their products. During
his studies at Østfold University College he has done an exchange se-
mester abroad to California State University, Monterey Bay, where he
focused on web development using CMS, JavaScript, jQuery, HTML and
CSS, and graphic design. He is the former vice-president of NITO Stu-
dentene Halden which is a union for engineers and technologists.

2

1.1. THE GROUP CHAPTER 1. INTRODUCTION

Simon studies Information Systems with emphasis on web develop-
ment. He has taken courses like Project Management, Marketing, Bu-
siness Economics and Graphic Design.

Simon joined the group at a later stage than the rest, see appendix
E.

1.1.3 Nicolai Naglestad

Studied International Baccalaureate at Skagerak International School
in Sandefjord. Nicolai has a great interest in technology and is always
looking for something new to learn. Beside his studies, he works as a
student assistant in the subjects Introduction to Programming, Web De-
velopment, Object-oriented Programming. He also works at the schools
MakerSpace where the latter is a position where he helps students get
started on projects and with the use of the 3D printers. Nicolai has a
great variety of interests with most aspects the are to be found inside
the MakerSpace and you will find him there most of the time.

Nicolai studies Digital Media Production at Østfold University College,
but has taken subjects such as OOP, Software Engineering and .NET.
He also enjoys learning new systems and languages.

1.1.4 Espen Ottar Skjeggestad

He has a broad field of interest, but the main ones are IT and Biology.
He is an active person that likes jogging, training, diving and trips. He
is also politically active in the student politics and has roles as elected
representative for the class, member of the student counsel and mem-
ber of the executive committee for the student-democracy. He is cur-
rently a student substitute member of the University College Board. He
is student assistant for GRIT and is now working at the school library.

Espen studies Information Systems with focus on IT and code, but also
includes business leadership and classes on economy.

3

1.2. EMPLOYER CHAPTER 1. INTRODUCTION

1.2 Employer

The employer for this project is MakerSpace (MS) which is a room loca-
ted in Østfold University College (HiØ). The MakerSpace is a playroom
for creating all types of technology, everything from electronics and ro-
botics, to programming and 3D-printing. The room is currently funded
and managed by the IT department.

Students and lecturers can use the rooms equipment to experiment
with technology to further educate themselves within topics they find
interesting, and that are not necessarily related to any ongoing subjects
at the University College. MakerSpace is open to all students and staff
of the school, but is mainly used by the IT department.

The employers for this project are Staff Engineer Espen Teigen and
University College Teacher Michael Andersen Lundsveen.

1.3 Task

The goal of this project is to develop an inventory- and loan-system
for Østfold University College’s MakerSpace. The purpose of this is to
make it easier for employees at MakerSpace to keep track of inventory
at all times. A full inventory system will help both students and staff
to find equipment when a student assistant or department Engineer is
not available. The system should preferably be able to know where
equipment is located in MakerSpace at any given time.

1.3.1 Purpose

The purpose of this system is to make maintaining MakerSpace easier
for all parties, but mainly for the employees of MakerSpace. This me-
ans that less time is used to maintain inventory and less time is used to
help users find different equipment. This benefits the school by saving
time and money, as the student assistants do not need to be consul-
ted as often. They currently help with mundane tasks such as finding
equipment, counting inventory, and deciding which items that need to
be ordered.

4

1.3. TASK CHAPTER 1. INTRODUCTION

1.3.2 Project delivery / Prototype

The group aims to supply the employer with a website (front-end) and
server (back-end) that is user tested to the employers and users speci-
fication.

The website will support the following features:

• View all items (Name, Location, Description, Amount in stock)

• Create/Update/Delete items (CRUD)

• Register/Modify/Delete/View users

• User registration either by custom system or by OAuth 2.0

Additionally, there will be a REST API based on Node.js and Mon-
goDB to provide a system for storing the information for the website
and possible future applications or other systems.

1.3.3 Documentation

Each separate prototype/system will also include full documentation on
how the system is to be used and in the case of the REST API, how
it can be used in other systems. This documentation will be hosted
on the same location as where the code is stored (GitHub). As with our
main project page, the document will be a web page generated by Jekyll
hosted by GitHub Pages.

1.3.4 Method

The group will be using the incremental method for the development
of the system. This method focuses on development piece by piece,
and works well for modular systems. It also works for quantitative and
qualitative testing of the parts that are finished. These parts can also
be used, and delivered to the employer.

The incremental method works by finishing one piece of the system
at a time. E.g The database-system is made first, and finished. After-
wards, the next part can be worked on.

This method has a lower risk of total failure and no delivery, because
it is made up by separately working pieces.

5

1.4. REPORT STRUCTURE CHAPTER 1. INTRODUCTION

1.4 Report structure

The report will be structured in the following way

1. Introduction

2. Glossary

3. Analysis

4. Design

5. Implementation

6. Testing

7. Discussion and Evaluation

8. Conclusion

1.4.1 Introduction

This chapter gives an introduction of the group, employer, the task and
how the group plans to execute the task.

1.4.2 Glossary

This chapter describes the tools and terminology that are essential for
the project.

1.4.3 Analysis

This chapter show the groups analysis of the task, tools, security, cost,
technology and analyses the use of the system.

1.4.4 Design

This is where the design of the system is discussed. The design process,
implementations and decisions during the project are addressed here.

6

1.4. REPORT STRUCTURE CHAPTER 1. INTRODUCTION

1.4.5 Implementation

The group used iterations as a development method, and the different
iterations are listed with details below. The back-end is developed all
throughout the project, but mostly after the front-end specifications. If
it was needed for functions or support for the front-end, it got imple-
mented in the back-end as well. Because of this, there will not be a lot
of discussions about how the different iterations changed the back-end.

1.4.6 Testing

This chapter goes through the test process from start to execution.
What tasks the test persons had and results from the open interview
at the end of the test.

1.4.7 Discussion and Evaluation

This chapter will discuss design, implementation, testing, method and
possible future work elements.

1.4.8 Conclusion

In this chapter the group will determine the conclusion on the comple-
tion of the project.

7

1.5. PROJECT PLAN CHAPTER 1. INTRODUCTION

1.5 Project Plan

The group is required to follow a set of deliveries during the project
period.

1.5.1 Main Deliveries

D1 January 18th - Preliminary Report
D2 March 9th - 1st Version of the Main Report
D3 April 20th - 2nd Version of the Main Report
D4 May 16th - Final Report and Source Code of the System
D5 May 29th - Hang up Poster
D6 June 1st - Presentation

1.5.2 Milestones

M1 - Alpha of the website, front end
M2 - Making the website talk to the server, back end
M3 - Adding items to server through the website
M4 - Final delivery
M5 - Presentation

8

Chapter 2

Glossary

This chapter describes the tools and terminology that are essential for
the project.

9

2.1. MAKERSPACE CHAPTER 2. GLOSSARY

2.1 MakerSpace

MakerSpace is mainly manned by approximately three student assis-
tants. It has a large room with usually a lot of people visiting throug-
hout the day. Many of the students visiting make do by themselves, but
occasionally need student assistants to find something or get advice on
how to do a project. The student assistants mainly work with making
sure the MakerSpace room is in order. They also provide courses in
relevant subjects for MakerSpace like 3D printing and drones.

2.2 Program tools

2.2.1 MongoDB

It was chosen to use MongoDB as a database system because the group
mainly wanted to learn how to use a NOSQL database system. Mon-
goDB type databases, have some strengths that make it easier to be
used when developing a system. MongoDB themselves have a good
overview showing the differences of SQL and NOSQL [1] that can both
be helpful to build the database easier and experience can be gained
with this type of system as this might become very relevant for busi-
ness in the future.

2.2.2 Node.js

Like with the database system, it is mostly chosen due to the want to
learn and experiment with technologies that have not been used yet
in subjects at HiØ previously. The group also looked around at what
others had been using to make a REST API and why they used that
specific architecture.

It was quickly found that most recommended to use Node.js. This
was because it is well documented and is very easy to setup and test
(requiring only the server itself and a database server to connect to)
other architectures require specific software from the server to run.
(As an example a REST API based on Spring/Java requires a Gradle or
Apache Maven server to run)

10

2.2. PROGRAM TOOLS CHAPTER 2. GLOSSARY

2.2.3 CRUD

CRUD is a acronym for Create, Read, Update, and Delete. The group
refers to this as functionality it wants in the REST API when it comes
to communication with the database. Every model used in the database
will have to follow CRUD. For example it has to be possible to create
items in the database as well as update and delete them. CRUD for the
most part refers to the communication between a database server and
a the database consumer (in this case the API).

2.2.4 Postman

Postman is a tool for testing and debugging REST APIs and is used
extensively throughout the development of the API. It can emulate and
run calls to the API as if it was a client (being a website or a mobile
device). The program is free and available on all OS platforms as well
as being a Chrome extention.

Figure 2.1: Screenshot of Postman interface.

11

2.3. COLLABORATION TOOLS CHAPTER 2. GLOSSARY

2.3 Collaboration tools

2.3.1 Git and GitHub

The group uses Git and GitHub for version control, both for the report
and the development.

The repositories on GitHub are public for everyone to see and con-
tribute to, since this is a MakerSpace project. All the development is
open source, and GitHub is a good platform for this exact purpose.

2.3.2 Trello

Trello is a web based Kanban board. Kanban is a method for managing
knowledge-work by the use of a post-it like form. This gives a visual
rendering of the processes.

Figure 2.2: Trello bord

12

2.3. COLLABORATION TOOLS CHAPTER 2. GLOSSARY

2.3.3 LATEX

The group chose to use LATEX for writing the report and the documen-
tation. The Minutes are also written in LATEX.

The group chose to use LATEX over other text editors, because of the
usability. When it comes to large projects and reports, LATEX is superior
to other editors.

It is proven [2] that LATEX is easier to use and more manageable on
larger reports and projects, over for example Word. When a document
becomes complex, it is a lot easier to use LATEX. As can be seen in the
graph below (figure 2.3).

Figure 2.3: Graph about document complexity.

13

Chapter 3

Analysis

This chapter show the groups analysis of the task, tools, security, cost,
technology and analyses the use of the system.

14

3.1. THE TASK CHAPTER 3. ANALYSIS

3.1 The task

The task comes from a need to get a control over the items that exists
in MakerSpace. What they are and approximately how many there are.
The system will need the student assistants that work on MakerSpace
to add and remove items. The leader of MakerSpace will need to have
the same rights and the possibility to add and remove student assis-
tants. There will not be a need to get an exact count on items like small
LEDs and screws. However bigger and more expensive equipment like
Raspberry Pis or drones will need an exact count.

3.2 Open Source

It is more common to develop community software like a MakerSpace
inventory system open source, than make everything closed and away
from the public. There are many reasons why software should be open
source, and what makes open source better. The MakerSpace Manage-
ment System is licensed under the MIT License.

3.2.1 MIT License

The MIT License is a license for free software. It is a permissive license,
and puts only a few restrictions on reuse of the software. The license
originated from Massachusetts Institute of Technology (MIT).

3.2.2 MakerSpace Management System MIT License

The MIT License (MIT)

Copyright (c) 2017- MakerManagement https://makermanagement.github.io/

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the "Soft-
ware"), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, su-
blicense, and/or sell copies of the Software, and to permit persons to
whom the Software is furnished to do so, subject to the following con-
ditions:

15

3.2. OPEN SOURCE CHAPTER 3. ANALYSIS

The above copyright notice and this permission notice shall be inclu-
ded in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CON-
TRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CON-
NECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

3.2.3 Security

Software developed open source, tends to have a higher level of se-
curity than closed software. Since open source software is viewed by
everyone who is interested, errors and flaws of the software will be
found more easily and fixed quicker than if the software was closed off.

“Security through obscurity” is a popular statement used by compa-
nies and people who want their software closed off and restricted from
the public. Open source is the opposite from this, and encourages ot-
hers to help and contribute towards the software. A good example for
when open source was a good thing , was when the Linux kernel had an
bug which caused people to exploit the software[3]. The bug got fixed
quickly, because of the Linux community. This would not be the case in
bigger, closed off companies. It could take weeks, even months for a
patch in for example Windows.

3.2.4 Cost

The cost of open source software will in most cases be notably lower
than closed off software. As software developed open source often uses
other open source technologies, it will be practically no cost to run the
software.

16

3.3. THE SECURITY ASPECT CHAPTER 3. ANALYSIS

3.2.5 Support and maintainability

To find support and help for most open source software the user can
just search for the problem online. There are large groups of people
helping each other in online communities, and it is normally free.

3.3 The Security Aspect

3.3.1 Using existing systems (HTTP Auth, OAuth2,
Etc.)

There are already countless authentication and security systems which
differ in features and how complex the encryption method is. The bene-
fit of using an existing system is that it is maintained by as larger group
of people and is well tested so when it is fully set up, it will work well as
described in the documentation, which is also another positive aspect
of using an existing system.

A negative aspect of using an existing system is that there is a higher
possibility that the system can be hacked/cracked, therefore it will be
essential to make sure the system is always up-to-date. Furthermore
many of these existing systems allow multiple authentication methods
to be used at the same time. (In an example using OAuth2, you can
allow login via Google, Facebook and Feide. Here all 3 methods can be
attacked and you are trusting these separate systems that they will not
grant a unwanted user access.)

3.3.2 Custom system

Making a custom system can be both more secure and easier to gain
access to. As it is a custom system, it can be better tailored to the
specific needs of the project. Whereas an existing system will have
loads of functionalities that are not needed, and these extra functions
could have vulnerabilities that are unpredictable.

However a custom system requires more upkeep as issues and vul-
nerabilities could be found after it is created and implemented. In this
system no sensitive information other than a users password will be sto-
red, so the system would have to make sure that passwords are stored
as securely as possible.

17

3.4. THE TECHNOLOGY CHAPTER 3. ANALYSIS

3.3.3 Internet vs Intranet

The employer has requested that the website should only be accessi-
ble while at the university, as the system is a listing of equipment in
MakerSpace and could give potential thieves an incentive to steal the
equipment. This request adds another layer of security as the website
is only accessible through the Intranet.

As the system will be installed at the Østfold University College
there are already existing systems that monitor the traffic and log sus-
pect activity as well as all WiFi users being authenticated. In this situ-
ation the group would just have to make sure that the server logs all
activity so if there is a attempt on hacking the system the logs and the
universities systems can be used to find and block the hacker.

The only issue here is that a local custom authentication system has
to be used that does not rely on external authenticators. As they all
require a connection to the server that a user is trying to authenticate
to, in order to make sure that the user is actually trying to authenticate
with that specific server.

3.4 The Technology

The technology used in developing the MakerSpace Management Sy-
stem is chosen out of a couple of different factors.

Since the system is open source and a part of MakerSpace, it is
important to use languages and frameworks that are open source and
well documented. Another important factor is that the technologies are
well supported and easy to maintain.

3.4.1 Front-end

3.4.1.1 JavaScript / jQuery

JavaScript will be used for the main part of the system. Since the front-
end of the system is a webpage, it is only natural to use JavaScript.
JavaScript is well documented, well known and fits the needs of the
system.

jQuery is a JavaScript framework, but supports more GUI and UI
functions which will be useful for the user experience.

18

3.4. THE TECHNOLOGY CHAPTER 3. ANALYSIS

Since JavaScript is client side, it is less of a load on the server. This
means the server can be small and efficient, and can be placed on a
Raspberry Pi or similar pocket-size computers.

3.4.1.2 HTML5 / CSS3

HTML and CSS are the way of showing the information to the user. The
whole system is written from scratch, and follows standard conventions
from W3C. HTML and CSS are also accessible through all browsers and
devices, and will always be shown to the user.

3.4.1.3 PHP7

PHP is a big part of the system and webdesign in general. The system
uses PHP for a couple of different reasons, like language support, user
authentication, and page control.

One of the big advantages with PHP is the support against API’s.
The system will utilize PHP for sending and receiving data from the
API, and will handle the different HTML forms. PHP also works well
with cURL, which is a command line tool which supports HTTP/HTTPS
requests[4]. This means the system can ask the API through PHP and
cURL, and support full CRUD.

Like JavaScript, PHP is also widely used and well supported.

3.4.2 Back-end

3.4.2.1 MongoDB

MongoDB is a database system that is classified as a NOSQL system,
NOSQL is where the data in the database is stored and retrieved in
another way than the standard table method found in SQL type databa-
ses like MySQL. MongoDB stores its data as JSON-like data and there-
fore is an object-oriented database system. In NOSQL type databases
the models for data stores are dynamic therefore during development
changes can be made to the database that will not effect already exis-
ting data, where in a SQL database the whole table would have to be
changed to match the new database model. [5]

These positive factors of MongoDB make the general development of
software easier, as changing the model will not affect the JSON objects.

19

3.4. THE TECHNOLOGY CHAPTER 3. ANALYSIS

3.4.2.2 Node.js / Mongoose

Node.js is very similar to its counterpart JavaScript1. As JavaScript is
mainly client-side scripting and Node.js is server-side scripting. JavaS-
cript is embedded in a website’s HTML code and is run client-side by
a JavaScript engine. Node.js oppositely is run on server-side where it
can change the dynamics of a website before it is sent to the client.
Node.js is very good at handling a lot of asynchronous operations. This
makes Node.js a good choice for real-time web applications for example
chat systems and online games. However due to the multiple packages
you can add to Node.js applications and the simplicity in coding it is
widely used as a REST API platform. Furthermore, as it can handle
many asynchronous operations it should be able to handle many API
calls from different clients. [6]

Mongoose2 is a package that is installed via the Node.js package
manager (npm3). This can be used to make communication with the da-
tabase server easier and assist with error handling. This package helps
with connections to the database, model creation and helps with objects
that rely on other objects for information (relation based objects) and
seems to be the most used package for communication with MongoDB
and is also the package recommended by the MongoDB team.

3.4.2.3 REST API

REST is short for Representational State Transfer, it may also in some
cases be referred to as RESTful. A system being RESTful means that it
follows 3 main features:

• Client - Server: Meaning that the client handles the front-end
functionality and the server handles back-end operations. Where
front and back-end can be replaced independently.

• Stateless: Data from the client is not stored on the server between
requests and all session information is saved with the client.

• Cacheable: To improve performance the client can cache the re-
sponse from the RESTful service, therefore it will not have to re-

1https://www.javascript.com/
2http://mongoosejs.com/
3https://www.npmjs.com/

20

https://www.javascript.com/
http://mongoosejs.com/
https://www.npmjs.com/

3.4. THE TECHNOLOGY CHAPTER 3. ANALYSIS

quest the data that it already has. This then improves the perfor-
mance of both the client and REST service.

There is also a common practice with all REST APIs that they all return
data in the form of JSON. As JSON data can be consumed and created
by almost every programming language. By building a RESTful service
it is possible to create mobile apps and other applications in the future.
[7]

3.4.2.4 Linux Apache

Linux is a open source kernel (operating system) clone of UNIX4. It
is lightweight and therefore requires very little hardware to operate
itself. As it is community driven, it is very secure with many suppor-
ted and well documented programs. Most members of the group have
experience using this operating system from classes at the University
College, which will result in general setup of the system being quite
short as well as any issues that may arise can be handled and fixed fai-
rly easy. Also the University College is able to provide a virtual machine
running a flavor of Linux called Ubuntu Server5

Apache is a one of the most used web server software and is like most
other Linux software, open source and is maintained by the Apache
Software Foundation6. Like with Linux, most members of the group
are familiar with the software and require almost no configuration to
run a simple website. However there will have to be some edits to the
configuration to make it work with the API, but the research seems to
point out that this will not be a problem.

4http://opengroup.org/unix
5https://www.ubuntu.com/server
6https://www.apache.org/

21

http://opengroup.org/unix
https://www.ubuntu.com/server
https://www.apache.org/

3.5. USERS CHAPTER 3. ANALYSIS

3.5 Users

What can the different user roles do. The three main users of this sy-
stem will be regular user, student assistant and admin. A regular user
is a student or employee at the HiØ without any commitments in Ma-
kerSpace. A student assistant is employed by MakerSpace to help with
daily activities. The admin has responsibility of the overall system and
ordering new items that have low stock.

3.5.1 User Stories

A user story is a different scenario of tasks a user, admin or student
assistant can do. This will help to understand the functionality of the
system, and provide a solution for the different scenarios.

• As a User
I want to find a LED bulb
So I can check the availability

Solution: Use the search field to find the LED bulb

• As a User
I want to send an e-mail to MakerSpace
To check when an item is available

Solution: Click on "Contact Us" and get redirected to your compu-
ters mail client

• As a Student Assistant
I want to reply an e-mail
So I can provide service

Solution: Log in to the e-mail of MakerSpace to read and reply

• As a Student Assistant
I want to add a new Category
Because that Category does not exist.

Solution: Log in to the admin panel, click "Add new category"
and fill out the form

22

3.5. USERS CHAPTER 3. ANALYSIS

• As a Student Assistant
I want to add a new item Location
Because that Location does not exist.

Solution: Log in to the admin panel, click "Add new location" and
fill out the form

• As a Admin
I want to check the availability of an item
So I can order more if needed

Solution: Log in to the admin panel, to get a full overview of avai-
lability

• As a Admin
I want to add new items
Because these items do not exist in the database

Solution: Log in to admin panel and click "Add new item", fill out
the form

23

Chapter 4

Design

This is where the design of the system is discussed. The design process,
implementations and decisions during the project are addressed here.

24

4.1. WHAT IS ALREADY OUT THERE? CHAPTER 4. DESIGN

4.1 What is already out there?

The different Makerspaces around the world use different systems for
inventory. After researching online, it seems like it is only Dallas Maker-
Space that has any information about it online. They have an inventory
system, but it is no longer under development since 27 February 2013.
This shows how an universal inventory system will be useful, not only
for the MakerSpace at HiØ but also Makerspaces around the world. Af-
ter looking into the system Dallas MakerSpace uses, it was decided to
going for a new design. Mostly because their system is old, and not well
developed. The new system is versatile and open source, so it is easy
for other Makerspaces to implement and run the same system.

Even the different Makerspaces in Norway use standard shelves and
paper notes on what they have in inventory, and do not have any system
for inventory. Since MakerSpace stands for technology and develop-
ment, a system to keep track of the inventory should be mandatory.

4.2 Site layout

The site layout is focused on easy recognizability through the use of
models based on the business model from sites like Komplett.no1, Kjell
& Company2 and Thingiverse3. This is because the model is well tested
and easy to recognize for the user. These kind of designs were chosen
because they are product/item based. The basis is a landing page with
featured items with a search bar and usually a menu with categories to
the left or on the top of the site. Like most sites a language selection
is at the top right corner. For each product item/product page there
is usually a description, specification, product reviews and if it is in
stock and sometimes how many there are. Out of that information the
wireframes are made.

1https://www.komplett.no/
2https://www.kjell.com/no/
3http://www.thingiverse.com/

25

https://www.komplett.no/
https://www.kjell.com/no/
http://www.thingiverse.com/

4.2. SITE LAYOUT CHAPTER 4. DESIGN

Figure 4.1: Wireframe for the landing page

The start/landing-page makes use of search, categories, and item
layout with pictures for each item.

26

4.2. SITE LAYOUT CHAPTER 4. DESIGN

Figure 4.2: Wireframe for the item page

The item page makes use of a picture, amount, specification box,
information box and location for the item.

The first plan for the site was to have one item page for each and
every item with a description, professional product information, a good
picture and the correct amount. However, after discussion with the su-
pervisor about how the workforce of MakerSpace is limited, the idea
was changed. There are only 2-3 student assistants working at part
time. The work that would go into making sure each item had a lot of

27

4.3. MONGODB MODELS CHAPTER 4. DESIGN

information would take a lot of work. The danger is if the workload is
too big to create items in the page then it might end up that it is not
used at all. The workload to use the site must be so low and mostly
effortless so that it is possible to do on the low work hours that Maker-
Space student assistants have. The change was that some items will
get grouped together. Like LED lights or filaments for 3D-printers. As
well as add color layout an so on in the description. Most items will not
display amounts, since this kind of inventory will take too much time
to keep up-to-date. Only some items like development boards, drones,
printers and other expensive equipment will have amounts. A button to
inform that and item is missing or in low supply, is also added.

4.3 MongoDB Models

As stated in chapter 3, the database is a NOSQL type database there is
no good way to properly represent the database models. It was there-
fore chosen to display them in two ways; the model.js file in the NodeJS
server and a output from the REST API in its default JSON format.

28

4.3. MONGODB MODELS CHAPTER 4. DESIGN

4.3.1 Items

4.3.1.1 Node.js Model

1 var ItemSchema = new mongoose.Schema(
2 {
3 item_name: {
4 type: String,
5 unique: true,
6 required: true
7 },
8 description: {
9 en: String,

10 no: String
11 },
12 short_description: {
13 en: String,
14 no: String
15 },
16 categories: [
17 {
18 type: mongoose.Schema.ObjectId,
19 ref: ’Category’
20 }
21],
22 tags: [
23 {
24 type: mongoose.Schema.ObjectId,
25 ref: ’Tag’
26 }
27],
28 locale: {
29 type: mongoose.Schema.ObjectId,
30 ref: ’Location’
31 },
32 image_url: String,
33 quantity: Number
34 }
35);

29

4.3. MONGODB MODELS CHAPTER 4. DESIGN

4.3.1.2 JSON Model

1 {
2 "_id": "58de638c5edb8f418b9c22d5",
3 "quantity": 5,
4 "image_url": "http://website.com/image.jpg",
5 "item_name": "A Item",
6 "__v": 0,
7 "tags": [
8 {
9 "_id": "58b445ecbdc857062a247226",

10 "__v": 0,
11 "tag": {
12 "en": "arduino",
13 "no": "arduino"
14 }
15 }
16],
17 "categories": [
18 {
19 "_id": "58ac2d03bdc857062a24721a",
20 "__v": 0,
21 "category": {
22 "en": "Arduino",
23 "no": "Arduino"
24 }
25 }
26],
27 "description": {
28 "en": "A item.",
29 "no": "En ting."
30 }
31 }

30

4.3. MONGODB MODELS CHAPTER 4. DESIGN

4.3.2 Category

4.3.2.1 Node.js Model

1 var CategorySchema = new mongoose.Schema(
2 {
3 category: {
4 en: {type: String, required: true},
5 no: String
6 }
7 }
8);

4.3.2.2 JSON Model

1 {
2 "_id": "58a3309f170b430a6a835012",
3 "__v": 0,
4 "category": {
5 "en": "Test Category 1",
6 "no": "Test Kategori 1"
7 }
8 }

31

4.3. MONGODB MODELS CHAPTER 4. DESIGN

4.3.3 Tag

4.3.3.1 Node.js Model

1 var TagSchema = new mongoose.Schema(
2 {
3 tag: {
4 en: {type: String, required: true},
5 no: String
6 }
7 }
8);

4.3.3.2 JSON Model

1 {
2 "_id": "58b445ecbdc857062a247226",
3 "__v": 0,
4 "tag": {
5 "en": "arduino",
6 "no": "arduino"
7 }
8 }

32

4.3. MONGODB MODELS CHAPTER 4. DESIGN

4.3.4 Location/Locale

4.3.4.1 Node.js Model

1 var LocationSchema = new mongoose.Schema(
2 {
3 locale: {type: String, required: true}
4 }
5);

4.3.4.2 JSON Model

1 {
2 "_id": "58e1968555014b6496c614b3",
3 "locale": "Makerspace",
4 "__v": 0
5 }

33

Chapter 5

Implementation

The group used iterations as a development method, and the different
iterations are listed with details below. The back-end is developed all
throughout the project, but mostly after the front-end specifications. If
it was needed for functions or support for the front-end, it got imple-
mented in the back-end as well. Because of this, there will not be a lot
of discussions about how the different iterations changed the back-end.

34

5.1. FLOWCHARTS CHAPTER 5. IMPLEMENTATION

5.1 Flowcharts

The group developed the system after some simple flowchart guideli-
nes. These flowcharts were utilized in the implementation of the sy-
stem.

Figure 5.1: Flowchart for adding an item

35

5.1. FLOWCHARTS CHAPTER 5. IMPLEMENTATION

Figure 5.2: Flowchart for searching for an item

36

5.2. FIRST ITERATION CHAPTER 5. IMPLEMENTATION

5.2 First iteration

5.2.1 Website (Front-end)

The first website version did not call the API to receive items from the
server, but used a local JSON file.

5.2.1.1 Design

As shown in the design site layout chapter 4, the landing page is based
on the wireframe from figure 4.1. The page is simple, but shows an
early version of the design.

After discussions with the tutor and the employer, the first design
needed to be simplified. Since the system will be updated by a small
group of people, it must be simple and cannot take too much time to
update items.

The system started out as a page that looks much like sites like
Komplett.no, mpx.no and other online stores, but had to be shortened
down a fair bit.

In this version of the system, it was not possible to click any items
and get more information about them. It is also not possible to click the
categories.

Figure 5.3: Screenshot of the landing page English (first iteration)

37

5.2. FIRST ITERATION CHAPTER 5. IMPLEMENTATION

Figure 5.4: Screenshot of the landing page Norwegian (first iteration)

As seen in figure 5.3 and figure 5.4 there are different languages by
choosing language in the right corner.

5.2.1.2 Technology

Even though this is an early version of the system, the language support
works well. The system uses PHP and JavaScript to achieve the functi-
onality (discussed in chapter 3), and is responsive. The PHP handles
language support, and JavaScript for JSON handling.

The language can be changed by clicking the different languages in
the right corner. This will change the link accordingly.

For example:
http://158.39.162.161/?lang=no
and
http://158.39.162.161/?lang=en

5.2.2 Node.js API (Back-end)

The first iterations of the API only had GET and POST calls of items and
GET calls for categories. It would either return all objects or a single
object based on the URL.

The following endpoints were available in the first iteration of the
REST API:

38

http://158.39.162.161/?lang=no
http://158.39.162.161/?lang=en

5.3. SECOND ITERATION CHAPTER 5. IMPLEMENTATION

• GET –> http://api.url/api/items/
- Returns all items

• POST –> http://api.url/api/items/
- Adds an item and returns the new item

• GET –> http://api.url/api/items/[ITEM-ID]
- Returns single items that match ITEM-ID

• GET –> http://api.url/api/categories/
- Returns all categories

5.3 Second iteration

5.3.1 Website (Front-end)

The second iteration of the system contains API calls, so all items listed
on the page are collected from the API.

The system utilizes the API calls from the first iteration, and returns
a JSON structure. It then lists all items in the JSON and displays each
item on the webpage.

Figure 5.5: Screenshot of the landing page (second iteration)

In figure 5.5 you can see how all the items from the API are listed
on the page.

39

http://api.url/api/items/
http://api.url/api/items/
http://api.url/api/items/[ITEM-ID]
http://api.url/api/categories/

5.4. THIRD ITERATION CHAPTER 5. IMPLEMENTATION

5.3.2 Back-end

During this iteration all CRUD operations where made for items and
categories. However the front-end system at that time did not use any
functions other than read, so most operations where done via Postman.
These functions were planned for the next iteration of the front-end.
Progress after this iteration is to start making the endpoints for tags
and item locations.

5.4 Third iteration

5.4.1 Website (Front-end)

In this iteration, the system got a major overhaul and loads of functions
were added.

Figure 5.6: Screenshot of the landing page (third iteration)

5.4.1.1 General changes

The items are easier to see, and they contain a title and a description.
The categories are now listed on the side, from the API. There is also
a button for loading more items on the page. There are only 12 items
loaded when entering the website, but you can click the Load More
button to get 12 more items. This makes the site tidier and look cleaner.

40

5.4. THIRD ITERATION CHAPTER 5. IMPLEMENTATION

5.4.1.2 Search field

The search field also works in this iteration. When the user starts to
write in the search field, the system shows all items that contains the
letter or word. See figure 5.7

Figure 5.7: Screenshot of the landing page with search (third iteration)

5.4.1.3 Item page

The item page is a big part of the system, and is the main area where
the user will get information about an item. In this iteration, the user
can find a description and a picture of the specific item.

41

5.4. THIRD ITERATION CHAPTER 5. IMPLEMENTATION

Figure 5.8: Screenshot of the item page of a specific item (third itera-
tion)

The specific item gets chosen with PHP, through the ID of the item.
For example:

http://158.39.162.161/itempage.php?item=58ab8f776bfd630ef83b5509
or
http://158.39.162.161/itempage.php?item=58ac0ace6bfd630ef83b550c

42

http://158.39.162.161/itempage.php?item=58ab8f776bfd630ef83b5509
http://158.39.162.161/itempage.php?item=58ac0ace6bfd630ef83b550c

5.4. THIRD ITERATION CHAPTER 5. IMPLEMENTATION

5.4.1.4 Administrator page

Figure 5.9: Screenshot of the administrator page (third iteration)

An administrator page is implemented where the system administrator
and those who works at MakerSpace, can add new items to the API.
These will automatically appear on the landing page when the admin
clicks send. The simple design of the administrator panel can be seen
in figure 5.9.

5.4.2 Back-end

At this stage all endpoints (item, categories, location, tags) have CRUD
functionality. These functions are to be added to the front-end on its
next iteration. Work now will consist of research and testing of authen-
tication for the API.

43

5.5. FOURTH ITERATION CHAPTER 5. IMPLEMENTATION

5.5 Fourth iteration

5.5.1 Website (Front-end)

This is the final iteration of the system, where most functionalities are
implemented and work well.

Most of the design remains the same, with some changes to the item
page design.

5.5.1.1 General changes

The landing page looks much like the other iterations. The biggest
difference here is that the categories now work.

Figure 5.10: Screenshot of the landing page with categories (fourth
iteration)

The categories get chosen with PHP, through the ID of the category.
You can see this in the URL field of the browser, For example:
http://158.39.162.161/index.php?category=58e38f5fee85df30572ed61c
or
http://158.39.162.161/index.php?category=58e38ea9ee85df30572ed61b

44

http://158.39.162.161/index.php?category=58e38f5fee85df30572ed61c
http://158.39.162.161/index.php?category=58e38ea9ee85df30572ed61b

5.5. FOURTH ITERATION CHAPTER 5. IMPLEMENTATION

5.5.1.2 Item page

The item page got some changes regarding how the admins will see it,
plus some additional information about quantity and location.

Figure 5.11: Screenshot of the item page (fourth iteration)

As seen in figure 5.11, there is now an edit field on the right side of
the item. This field is only visible to admins and employees at Maker-
Space, and it is the only way of editing an item.

When the admin clicks update or delete on this form, it sends the
information to the API and either updates (PUT request) or deletes (DE-
LETE request) the item.

The user would just see the item page without the edit item option.
They would still see quantity and location of the item, since this is valu-
able information. See figure 5.12 for an example of an item as a user.

45

5.5. FOURTH ITERATION CHAPTER 5. IMPLEMENTATION

Figure 5.12: Screenshot of the item page as a user (fourth iteration)

5.5.1.3 Administrator page

The administrator page now supports adding new items, new categories
and new locations. The administrator page is dynamic, and it is only a
small part of the content that needs to be changed out when the admin
interacts.

Figure 5.13: Screenshot of the administrator page (fourth iteration)

46

5.5. FOURTH ITERATION CHAPTER 5. IMPLEMENTATION

As seen in figure 5.13 the administrator can now add new categories
and locations.

To add new locations or items, the administrator only needs to click
the different links. This will change the URL, and PHP will change the
content. For example:
http://158.39.162.161/admin.php?type=item
or
http://158.39.162.161/admin.php?type=category

5.5.2 Back-end

Here continuous work on authentication has been done. The possibility
to use the national authentication platform Feide has been discussed
and will be looked into.

47

http://158.39.162.161/admin.php?type=item
http://158.39.162.161/admin.php?type=category

Chapter 6

Testing

This chapter goes through the test process from start to execution.
What tasks the test persons had and results from the open interview
at the end of the test.

48

6.1. WHY DO A USER TEST CHAPTER 6. TESTING

6.1 Why do a user test

A user test is to get the insight needed to make a site user friendly. [8]

• Simulates a close to real situation.

• Has concrete tasks for the user.

• Is a test to observe the user.

• Evaluates the user-friendliness of the site.

6.2 Test goal

The goal is to test the site’s usability. This include finding items, using
categories and adding new items.

To ensure the system does what it is supposed to do, the group needs
to verify this through a usability test. The group needs to ensure that
the new functions work as intended after implementation, as already
existing functions can get affected after rolling out the new implemen-
tation. [9]

Testing verifies that the system meets requirements and verificati-
ons to ensure that the system is built correctly. Testing helps to validate
that the system is being developed for what the user needs and expects.
[10]

6.3 Methods

6.3.1 Usability Testing

A qualitative method for testing the usability of a product is used, which
means giving the user a set of tasks to do on the product and evaluating
the results after the test. It is important to note that it is the product
that is tested, not the user. [8]

6.4 Target Audience

The target audience will be students and employees at HiØ, that do not
have as much knowledge about MakerSpace and its items. This is to

49

6.4. TARGET AUDIENCE CHAPTER 6. TESTING

make sure the system is optimal to understand for new users.
The test group will consist of 4 students, 2 male and 2 female, and 2

employees, 1 representative from each sex.

6.4.1 User Types

6.4.1.1 Student

Students are the main users in the user group. They will be using the
system mainly to search for items, look up information on specific items
and notifying when an item is low or out of stock.

6.4.1.2 Student Assistant

Student Assistants will be maintaining the inventory. This by adding,
editing and deleting - items, categories and locations.

6.4.1.3 Employee / Admin of MakerSpace

The admin of MakerSpace will mainly have an overview of the inventory.
The admin can also add, edit and delete users. This can be admins and
student assistants.

50

6.5. TEST EXECUTION CHAPTER 6. TESTING

6.5 Test Execution

6.5.1 Roles

6.5.1.1 User

The user will go through different instructions given by the test leader
for the site. The reactions and problems the user will encounter will be
valuable test data to improve the site.

6.5.1.2 Test Leader

The test leader will give instructions to the user and note all activity.

6.5.2 Setup

The user will be in the same room as the test leader. This is because
there is no good test environment available to have the user and the
test leader in separate rooms, like what would be normal for user tests.

The user will sit in an environment with as few distractions as pos-
sible. The test leader will sit behind the user to not distract and guide
the user with body language or other non-verbal communication.

6.5.3 Tasks

1. Find any kind of a LED light bulb that is the color red.

The goal of this test is to see if the user will prefer to find the LED
light bulb by using category or use the search bar

2. Find Cozmo and tell us what it can be used for.

The goal of this test is to see how the user will find an item they do
not know how to spell and if the search bar will help autocorrect.

3. Change language of the site from English to Norwegian.

The goal of this test is to see if the user easily can find where to
change the language of the site, or if this should be emphasized
more.

4. Add a random item (that the test leader provides) to the site.

51

6.6. RESULTS CHAPTER 6. TESTING

The goal of this test is to see if it’s easy to understand for a user
how to add a new item.

5. Find Arduino Uno without using the search box.

The goal of this test is to check what the user prefers to use. Ca-
tegory list or the inventory list.

6.5.4 After interview?

After testing the different tasks the test person got some follow-up que-
stions regarding the MakerSpace site.

1. Did you get an overview over what kind of items there are in Ma-
kerSpace?

2. Did you feel the site, interface and design was easy to understand
and figure out?

3. Do you have any suggestions to features that were missing or any
improvements to the site?

6.6 Results

In this section we present the results from the interview after we had
the test. A full set of the result will be found in Appendix A

6.6.1 Interview

Did you get an overview over what kind of items there are in Ma-
kerSpace?

Three of the six people who were in the test group said it was easy
to get an overview over the site and the products, and easy to read
information from the product boxes. The rest said it was not visually
represented well, too much text in the product boxes and that it took a
lot of time to understand what MakerSpace inventory was.

Did you feel the site, interface and design was easy to under-
stand and figure out?

52

6.6. RESULTS CHAPTER 6. TESTING

Five said it was easy to understand the site, and easy to get an overview.
One person complained that the categories were not clear enough.

Do you have any suggestions to features that were missing or
any improvements to the site?

Need more focus on a clean inventory site and more items. Need a
site with overview over employees at MakerSpace. The search bar and
"Load More"-button need to be more highlighted. The "Load More"-
button blended too much with the background. Change name to picture
in the product boxes, or have picture and name. There was a problem
with the red border on the dark background, and a dark background
generally does not work in a website. One said that the category bar
was too small and category name were bad choices. The category na-
mes need to have the same type of clarification. E.g. "Tools" is a vague
category, where "Drones" is more specific.

53

Chapter 7

Discussion and Evaluation

This chapter will discuss design, implementation, testing, method and
possible future work elements.

54

7.1. DESIGN CHAPTER 7. DISCUSSION AND EVALUATION

7.1 Design

During the start of the project the group had ambitions to make a web-
site with design that was equal to Komplett.no and Kjell&Company, a
webshop theme.

After discussions with the mentor and the employer of the project,
the design got simplified quite a bit. This was to make it more friendly
to those who need to update and add new information to the system.
4.2

7.2 Implementation

The group discussed the use of technologies and how the project should
be developed. Since it is a MakerSpace development system, the group
decided to use technologies they teach at Østfold University College
and make everything without the use of frameworks. The development
of the system will continue by students, and employees at MakerSpace.

The group checked out different frameworks to see if it would make
development of the website easier, and concluded that AngularJS1 would
make development easier. AngularJS is not part of any classes or sub-
jects at Østfold University College, which makes it difficult for students
to update and keep developing on the system. So even though frame-
works would make the development process easier, the group decided
to go for barebone JavaScript and PHP.

For the back-end, the group discovered and discussed to use a Node.js
framework called LoopBack2 that generates most of the code needed to
make a REST API. However after testing it was found out that the re-
sulting code is almost identical to what the system already had. It was
then decided that there was no need to use a framework to achieve the
same result.

It was easy to debug and resolve errors on the system, since it was
all developed by the group, and not by a framework. Like the front-
end, it is easier for any student or employee at MakerSpace to keep
developing the system when it is handwritten from scratch instead of
generated code.

1https://angular.io/
2https://loopback.io/

55

https://angular.io/
https://loopback.io/

7.3. USABILITY TEST CHAPTER 7. DISCUSSION AND EVALUATION

7.3 Usability Test

One issue of having a usability test with few testers is how reliable the
result is. With more testers, there would be more data that would give
better indications on changes that need to be done.

As said in test setup 6.5.2 the optimal setup for a usability test is
when the test leader and tester are in separate rooms, and the test
leader can still observe what the tester is doing. This is to prevent the
tester to get distracted by the test leader. This is something the group
could have used a little more time to get in order.

A new iteration was never made based on the results from the user
tests, as there was a shortage in time.

7.4 The Project Method

The project followed the use of the incremental method 1.3.4. The pro-
ject tool used to follow this was Trello 2.3.2. The groups early focus was
to start on coding project as fast as possible. This was an advisement
from our guidance counselor. In that early phase, with the use of ex-
treme programming, pair programming could have helped to give more
of the group better insight to the code. The other challenge was that
the incremental method should have each increment clearly defined.
This was not always easy to define as the group was inexperienced with
the development of layer systems made from scratch, and not always
knew what all necessary components were in each part.

7.5 Future

7.5.1 Front-end

7.5.1.1 General Design

The design of the front-end could need an update, to make it more user
friendly. This can be achieved by using different frameworks or CMS
systems, instead of hardcoding everything.

56

7.5. FUTURE CHAPTER 7. DISCUSSION AND EVALUATION

7.5.1.2 Design Item page

The item page needs to be updated to show the description, location
and quantity better, since the design is currently not optimized. This
can be solved by the same methods as section ??esign

7.5.1.3 Implement new functions

One of the functions the team has discussed, but not implemented, is
a way for users to contact employers of MakerSpace. This could be an
e-mail system, where the user fills out a form which sends an e-mail to
the employees. This e-mail could be information about items missing,
new items, wrong quantity or general questions.

7.5.2 Back-end

The REST API could be rebuilt to work with different frameworks, this
will make the general code base smaller as many functions that are
written by the group will be handled by the different frameworks. This
change will make it more difficult for new students at HIØ, as they
will be able to understand the basic JavaScript/Node.js code but might
struggle with understanding the generated code from the framework
as well as how it organizes files. However the benefit with using the
framework is that future development of the API could become easier
as these frameworks are usually well documented.

As this system is mainly designed to be used at universities and ot-
her university colleges it should for future releases and before it is used
at other schools implement the same authentication methods that are
used at schools (mainly Feide3). This will simplify the use of the system
as the system as a whole will not have to store all user info, it would
only have to keep a database of the authenticated users that are ad-
mins; here only the user’s id would be stored not any other information
like passwords as that is handled by the external authenticator.

3https://www.feide.no/introducing-feide

57

https://www.feide.no/introducing-feide

Chapter 8

Conclusion

In this chapter the group will determine the conclusion on the comple-
tion of the project.

58

CHAPTER 8. CONCLUSION

The main goal of the project was to develop and implement an in-
ventory system for MakerSpace at Østfold University College. This is
to make the management of its inventory easier. The group achieved
the goal by using the incremental method to develop a well-functioning
inventory system based on feedback from testers, the employer and the
mentor of the project.

The system is made up by two parts, one front-end and one back-
end. Users can see the website by going to http://158.39.162.161/
on the Østfold University College network, as the employers specified.

The group can conclude that the system now allows the users to
search for and find items, and employees can add items to the system.

59

http://158.39.162.161/

Bibliography

[1] 2017. [Online]. Available: https://www.mongodb.com/nosql-
explained.

[2] J. Blanco, Word or latex typesetting: Which one is more productive?
finally, scientifically assessed | computer science | mapping ig-
norance, 2015. [Online]. Available: http://mappingignorance.
org/2015/04/06/word-or-latex-typesetting-which-one-is-
more-productive-finally-scientifically-assessed/.

[3] E. Teo, Bug 634457 - cve-2010-3081 kernel: 64-bit compatibility
mode stack pointer underflow, 2010. [Online]. Available: https:
//bugzilla.redhat.com/show_bug.cgi?id=CVE-2010-3081.

[4] S. Pillai, Curl command tutorial in linux with example usage,
2014. [Online]. Available: http://www.slashroot.in/curl-
command-tutorial-linux-example-usage.

[5] 2017. [Online]. Available: https://www.mongodb.com/what-is-
mongodb.

[6] N. Foundation, About | node.js, 2017. [Online]. Available: https:
//nodejs.org/en/about/.

[7] T. Fredrich, What is rest? 2017. [Online]. Available: http://www.
restapitutorial.com/lessons/whatisrest.html.

[8] E. T. Andersen and J. G. World, Praktisk bukertesting, 1st ed. Cap-
pelen damm as, 2011.

[9] C. Thomson, 5 reasons we need software testing - test talk, 2014.
[Online]. Available: http://www.te52.com/testtalk/2014/08/
07/5-reasons-we-need-software-testing/.

60

https://www.mongodb.com/nosql-explained
https://www.mongodb.com/nosql-explained
http://mappingignorance.org/2015/04/06/word-or-latex-typesetting-which-one-is-more-productive-finally-scientifically-assessed/
http://mappingignorance.org/2015/04/06/word-or-latex-typesetting-which-one-is-more-productive-finally-scientifically-assessed/
http://mappingignorance.org/2015/04/06/word-or-latex-typesetting-which-one-is-more-productive-finally-scientifically-assessed/
https://bugzilla.redhat.com/show_bug.cgi?id=CVE-2010-3081
https://bugzilla.redhat.com/show_bug.cgi?id=CVE-2010-3081
http://www.slashroot.in/curl-command-tutorial-linux-example-usage
http://www.slashroot.in/curl-command-tutorial-linux-example-usage
https://www.mongodb.com/what-is-mongodb
https://www.mongodb.com/what-is-mongodb
https://nodejs.org/en/about/
https://nodejs.org/en/about/
http://www.restapitutorial.com/lessons/whatisrest.html
http://www.restapitutorial.com/lessons/whatisrest.html
http://www.te52.com/testtalk/2014/08/07/5-reasons-we-need-software-testing/
http://www.te52.com/testtalk/2014/08/07/5-reasons-we-need-software-testing/

BIBLIOGRAPHY BIBLIOGRAPHY

[10] A. Ghahrai, Why do we test ? what is the purpose of software tes-
ting ? 2010. [Online]. Available: http://www.testingexcellence.
com/why-do-we-test-what-is-the-purpose-of-software-
testing/.

61

http://www.testingexcellence.com/why-do-we-test-what-is-the-purpose-of-software-testing/
http://www.testingexcellence.com/why-do-we-test-what-is-the-purpose-of-software-testing/
http://www.testingexcellence.com/why-do-we-test-what-is-the-purpose-of-software-testing/

Appendix A

Raw Test Results

62

APPENDIX A. RAW TEST RESULTS

Figure A.1: Age and sex of the test persons

63

APPENDIX A. RAW TEST RESULTS

Figure A.2: If the test persons is a student or employee.

64

APPENDIX A. RAW TEST RESULTS

Figure A.3: Test task 1: Find a red LED light bulb

65

APPENDIX A. RAW TEST RESULTS

Figure A.4: Test task 2: Find Cozmo the robot

66

APPENDIX A. RAW TEST RESULTS

Figure A.5: Test task 3: Change language of the page from English to
Norwegian

67

APPENDIX A. RAW TEST RESULTS

Figure A.6: Test task 4: Add a product provided by the test leader

68

APPENDIX A. RAW TEST RESULTS

Figure A.7: Test task 5: Find Arduino Uno without using search field

69

APPENDIX A. RAW TEST RESULTS

Figure A.8: Post interview question 1 and 2: Insight on what items Ma-
kerSpace have to offer, And what the testers thought about the design

70

APPENDIX A. RAW TEST RESULTS

Figure A.9: Post interview question 3: Do the testers have any sugges-
tions to improvements

71

Appendix B

API Calls and Output

Note: Some text has been shortened down or changed to conserve
space.

72

B.1. GETTING ALL ITEMS APPENDIX B. API CALLS AND OUTPUT

B.1 Getting all items

Client Message

GET –> http://158.39.162.161/api/items/
No other information is needed from the client

Reply from API

Showing first 2 JSON objects
HTTP Status code: 200 OK

1 [
2 {
3 "_id": "58ac0ace6bfd630ef83b550c",
4 "image_url": "https://www.website.com/image.jpg",
5 "item_name": "Lysdiode",
6 "__v": 1,
7 "quantity": 0,
8 "tags": [],
9 "categories": [

10 {
11 "_id": "58ac2d2abdc857062a24721c",
12 "__v": 0,
13 "category": {
14 "en": "Lights",
15 "no": "Lys"
16 }
17 }
18],
19 "description": {
20 "en": "LED-lights Colors: white, yellow, ...",
21 "no": "LED-lys Farger: hvit, gul, ..."
22 }
23 },
24 {
25 "_id": "58b4afe58e7a3974d0e6eacb",
26 "image_url": "https://www.website.com/image.jpg",
27 "item_name": "Ultimaker 2+",
28 "__v": 1,

73

http://158.39.162.161/api/items

B.1. GETTING ALL ITEMS APPENDIX B. API CALLS AND OUTPUT

29 "locale": {
30 "_id": "58e1968555014b6496c614b3",
31 "locale": "Makerspace",
32 "__v": 0
33 },
34 "quantity": 1,
35 "tags": [],
36 "categories": [
37 {
38 "_id": "58e38fdfee85df30572ed61d",
39 "__v": 0,
40 "category": {
41 "en": "3D Printer",
42 "no": "3D Printer"
43 }
44 }
45],
46 "description": {
47 "en": "The Ultimaker 3D printer, a ...",
48 "no": "Ultimaker 3D printer, en ..."
49 }
50 },
51

74

B.2. GET A SINGLE ITEM APPENDIX B. API CALLS AND OUTPUT

B.2 Get a single item

Client Message

GET –> http://158.39.162.161/api/items/<ITEM_ID>
This call requires the items ID, if no ID is provided all items are retur-
ned. We want the item Ultimaker 2+ with ID: 58b4afe58e7a3974d0e6eacb,
therefore our URL will look like this:
http://158.39.162.161/api/items/58b4afe58e7a3974d0e6eacb

Reply from API

HTTP Status code: 200 OK

1 {
2 "_id": "58b4afe58e7a3974d0e6eacb",
3 "image_url": "https://www.website.com/image.jpg",
4 "item_name": "Ultimaker 2+",
5 "__v": 1,
6 "locale": {
7 "_id": "58e1968555014b6496c614b3",
8 "locale": "Makerspace",
9 "__v": 0

10 },
11 "quantity": 1,
12 "tags": [],
13 "categories": [
14 {
15 "_id": "58e38fdfee85df30572ed61d",
16 "__v": 0,
17 "category": {
18 "en": "3D Printer",
19 "no": "3D Printer"
20 }
21 }
22],
23 "description": {
24 "en": "The Ultimaker 3D printer, a ...",
25 "no": "Ultimaker 3D printer, en ..."
26 }

75

http://158.39.162.161/api/items/<ITEM_ID>
http://158.39.162.161/api/items/58b4afe58e7a3974d0e6eacb

B.3. UPDATING A ITEM APPENDIX B. API CALLS AND OUTPUT

27 }

B.3 Updating a item

Client Message

To update a item the item ID must be provided in the URL, otherwise
the API will return a error. As well as the ID being provided the whole
object that is to be updated is to be provided with old and new informa-
tion, as any missing details are assumed that they are to be deleted.
Note that for the locale and categories sections only the ID is given.
The API will accept both versions of this; only the ID or the whole ob-
ject. It is only interested in the ID and will ignore the rest of the data.

PUT –> http://158.39.162.161/api/items/58b4afe58e7a3974d0e6eacb

1 {
2 "image_url": "https://www.website.com/image.jpg",
3 "item_name": "Ultimaker 2+",
4 "locale": {"58e1968555014b6496c614b3"},
5 "quantity": 1,
6 "categories": ["58e38fdfee85df30572ed61d"],
7 "description": {
8 "en": "The Ultimaker 3D printer, a ...",
9 "no": "Ultimaker 3D printer, en ..."

10 }
11 }

Reply from API

HTTP Status code: 200 OK
As well as returning status code 200 the API will return the updated
object. We choose not to include it here as it would look the same as
above.

76

http://158.39.162.161/api/items/58b4afe58e7a3974d0e6eacb

B.4. DELETING A ITEM APPENDIX B. API CALLS AND OUTPUT

B.4 Deleting a item

Client Message

To delete a item the item ID must be provided in the URL, otherwise
the API will return a error.

DEL –> http://158.39.162.161/api/items/58b4afe58e7a3974d0e6eacb

Reply from API

HTTP Status code: 200 OK

1 {
2 "message": "Item removed!"
3 }

77

http://158.39.162.161/api/items/58b4afe58e7a3974d0e6eacb

B.5. CREATING A ITEM APPENDIX B. API CALLS AND OUTPUT

B.5 Creating a item

Client Message

To add a item to the API you have to at least provide a unique item
name all other options are optional

POST –> http://158.39.162.161/api/items/

1 {
2 "image_url": "https://www.website.com/image.jpg",
3 "item_name": "Ultimaker 2+",
4 "locale": ["58e1968555014b6496c614b3"],
5 "quantity": 1,
6 "categories": ["58e38fdfee85df30572ed61d"],
7 "description": {
8 "en": "The Ultimaker 3D printer, a ...",
9 "no": "Ultimaker 3D printer, en ..."

10 }
11 }

Reply from API

If the API found no other item with the same name it will return status
code 201 and return the newly created item with its ID so the client can
use it immediately without having to ask the API for all items to update
itself.

78

http://158.39.162.161/api/items/

B.5. CREATING A ITEM APPENDIX B. API CALLS AND OUTPUT

HTTP Status code: 201 Created

1 {
2 "message": "item added!",
3 "data": {
4 "__v": 0,
5 "quantity": 1,
6 "image_url": "https://www.website.com/image.jpg",
7 "locale": "58e1968555014b6496c614b3",
8 "item_name": "Ultimaker 2+",
9 "_id": "5917607bee85df30572ed62e",

10 "categories": [
11 "58e38fdfee85df30572ed61d"
12],
13 "description": {
14 "en": "The Ultimaker 3D printer, a ...",
15 "no": "Ultimaker 3D printer, en ..."
16 }
17 }
18 }

79

Appendix C

Project Contract

80

APPENDIX C. PROJECT CONTRACT

81

APPENDIX C. PROJECT CONTRACT

82

APPENDIX C. PROJECT CONTRACT

83

Appendix D

Group Contract

84

APPENDIX D. GROUP CONTRACT

85

APPENDIX D. GROUP CONTRACT

86

APPENDIX D. GROUP CONTRACT

Figure D.1: Additional signature from new member

87

Appendix E

Confirmation of Group Change

88

APPENDIX E. CONFIRMATION OF GROUP CHANGE

89

Appendix F

Meeting notes

90

BO17-G14 Guidance meeting
Minutes for January 24, 2017

Present: S. Børre (Chair), S. Espen, N. Nicolai B. Thomas

Absent:

Reports

The pre-report is delivered and approved

Last meeting points

1. Create pre-report

2. Create project contract
The minutes of the previous meeting were approved.

New Business

1. Define tools we are going to use

2. Have perimeter meeting with employer.

Next Meeting: Thursday, January 31, at 10:30

F.1. MEETING 24-1-17 APPENDIX F. MEETING NOTES

F.1 Meeting 24-1-17

91

BO17-G14 Guidance meeting
Minutes for January 31, 2017

Present: S. Børre (Chair), S. Espen, N. Nicolai B. Thomas

Absent: B. Thomas (Travelling)

Reports

Nothing notably to report.

Last meeting points

1. Create high fidelity wireframes
The minutes of the previous meeting were approved.

New Business

1. Create wireframes

2. Define work roles

3. Meeting with employer to discuss wireframes

Next Meeting: Thursday, February 07, at 10:30

F.2. MEETING 31-1-17 APPENDIX F. MEETING NOTES

F.2 Meeting 31-1-17

92

BO17-G14 Guidance meeting
Minutes for February 1, 2017

Present: T. Espen (Chair), S. Espen, N. Nicolai B. Thomas

Reports

1. Discussed simple wireframes

2. Not all items need a the amount displayed or counted.

New Business

1. Start on front and back-end design

Next Meeting: Tuesday, February 7, at 10:30

F.3. MEETING 1-2-17 APPENDIX F. MEETING NOTES

F.3 Meeting 1-2-17

93

BO17-G14 Guidance meeting
Minutes for February 07, 2017

Present: S. Børre (Chair), S. Espen, N. Nicolai B. Thomas

Absent:

Reports

Webpage

Database — We now have a server. MongoDB is no created and with some dummy-data.
Webpage — The HTML landing page is now created and show dummy data and has a
standard navigation menu that follow on all pages.

Last meeting points

1. check the webpage

2. Defining therms
The minutes of the previous meeting were approved.

New Business

1. ????

2. ????

Next Meeting: Thursday, February 14, at 10:30

F.4. MEETING 7-2-17 APPENDIX F. MEETING NOTES

F.4 Meeting 7-2-17

94

BO17-G14 Guidance meeting
Minutes for February 14, 2017

Present: S. Børre (Chair), S. Espen, N. Nicolai B. Thomas

Absent:

Reports

Webpage

Database — We now have a server. MongoDB is no created and with some dummy-data.
It used Json files.
HTML page — The HTML landing page is now created and show dummy data and has a
standard navigation menu that follow on all pages.

Last meeting points

1. Check the webpage

2. Defining therms

New Business

1. Start to fill out main report.

2. continue a prototype webpage so we can start user-testing.

3. Start to create a user-test.

Next Meeting: Thursday, February 21, at 10:30

F.5. MEETING 14-2-17 APPENDIX F. MEETING NOTES

F.5 Meeting 14-2-17

95

BO17-G14 Guidance meeting
Minutes for February 21, 2017

Present: S. Børre (Chair), S. Espen, N. Nicolai B. Thomas

Absent:

Reports

Site

HTML page —

• The page now speaks with the API

• Created item page and admin page

Database — Continud working on the API

• Fix database form by empty items.

• Fix models

• tarted working on authentication for API

Main report

Added some parts form pre-report to main-report. Gone through the main structure for the
template. Checked existing hall of fame reports to se best practise for the main-report.

Last meeting points

1. Start to fill out main report.

2. continue a prototype webpage so we can start user-testing.

3. Start to create a user-test.

New Business

1. Make a design on the webpage to make it ready for user testing.

2. Create the structure and fill out what we can on the main report. Add discussion of why
we chose to focus on a easy to update site rather then a heavy administrated site.

Next Meeting: Thursday, February 28, at 10:30

F.6. MEETING 21-2-17 APPENDIX F. MEETING NOTES

F.6 Meeting 21-2-17

96

BO17-G14 Guidance meeting
Minutes for February 28, 2017

Present: S. Børre (Chair), N. Nicolai, B. Thomas

Absent: S. Espen (Travelling)

Reports

Website

• We now have a detailed item view (not all info included)

• Search implemented (still testing)

Meeting discussions

New group member

We have been asked by a member of another bachelor group if he can join our group. We
discuss this matter during the meeting, where our supervisor states that this decision is up to us
te members of the group. Between now and next meeting we will make a decision if he will join
our group or not.

Website / System

We discussed different aspects of the website, what it still needs and how we will solve different
issues.

We discussed the following points that we need to implement on the website:

• Items

– View (done)
– Item out of stock / messaging system
– New items (semi done) / Edit items
– Tags on item page and in search

• Messaging system

– Item out of stock
– Loaned item
– General messages
– Need assistance

• Box location

F.7. MEETING 28-2-17 APPENDIX F. MEETING NOTES

F.7 Meeting 28-2-17

97

• Users

– Unauthenticated
∗ View items
∗ Send messages

– Authenticated
∗ Same as Unauthenticated
∗ CRUD items

– Admin
∗ Same as Authenticated
∗ CRUD news
∗ CRUD users

• Login System
Here it was discussed if we need a complicated login system as the majority of users on the
system are unauthenticated users.

Report

The deadline for the report is March 9, but our supervisor states that this date is not that
important as we can review the report every meeting.

Until next meeting

1. Continue work on website, to prepare it for user testing

2. Continued work on the report.

Next Meeting: Tuesday, March 7, 10:30

F.8. MEETING 28-2-17 APPENDIX F. MEETING NOTES

F.8 Meeting 28-2-17

98

BO17-G14 Guidance meeting
Minutes for March 14, 2017

Present: S. Børre (Chair), S. Espen, N. Nicolai B. Thomas D. Simon

Reports

New member is now in the group and active in all the tools we are using.

Last meeting points

1. Continue work on website, to prepare it for user testing

2. Continued work on the report. The minutes of the previous meeting were approved.

New Business

1. Work more on report. Especially Analysis and implementation

2. Remove most of template fill that is not needed in the main report.

3. Add part about why we changed the direction of the system from high bureaucracy to low
bureaucracy.

Next Meeting: Thursday, March 21, at 10:30

F.9. MEETING 14-3-17 APPENDIX F. MEETING NOTES

F.9 Meeting 14-3-17

99

BO17-G14 Guidance meeting
Minutes for March 21, 2017

Present: S. Børre (Chair), S. Espen, N. Nicolai B. Thomas D. Simon

Last meeting points

1. Work more on report. Especially Analysis and implementation

2. Make sure that the new report always is ready for Mondays.

3. Make sure that all task has defined owner and time limit.

Reports

First version of main report i delivered.

User-testing

User testing is done and noted.

New Business

1. Summarize testing result.

2. continue to work on report.

Next Meeting: Tuesday, April 04, at 10:30

F.10. MEETING 21-3-17 APPENDIX F. MEETING NOTES

F.10 Meeting 21-3-17

100

BO17-G14 Guidance meeting
Minutes for April 4, 2017

Present: S. Børre (Chair), S. Espen, N. Nicolai B. Thomas D. Simon

Last meeting points

1. Summarize testing result.

2. continue to work on report.

Reports

New Business

1. Add refferens to MongoDB.

2. Consider removing Latex figure.

3. Move wireframe figures to right spot.

4. change chapter 2 too glossary.

5. add implementations possess.

6. explain the difference from site layout one to two. Why we changed it.

7. add test evaluation under test chapter.

8. make sure that the reason to change the direction to a simpler design is clear.

Next Meeting: Wednesday, April 26, at 10:30

F.11. MEETING 4-4-17 APPENDIX F. MEETING NOTES

F.11 Meeting 4-4-17

101

BO17-G14 Guidance meeting
Minutes for Wednesday, April 26, at 10:30

Present: S. Børre (Chair), S. Espen, B. Thomas, D. Simon

Absent: N. Nicolai

Last meeting points

1. Add references to MongoDB.

2. Consider removing Latex figure.

3. Move wireframe figures to right spot.

4. change chapter 2 too glossary.

5. add implementations possess.

6. explain the difference from site layout one to two. Why we changed it.

7. add test evaluation under test chapter.

8. make sure that the reason to change the direction to a simpler design is clear.

Reports

1. Added implementations and incremental versions.

2. added more to design chapter.

3. changed chapter 2 to glossary.

New Business

1. Discussion about why and how the system got simplified for the use in MakerSpace.

2. Make sure that in the text that it’s clearly state that Simon came in later in the project.

3. Add and expand user-story for all roles that the system will have.

4. Describe the functionality we have in the system.

5. Remove 5 second test since it was not used.

Next Meeting: Undecided

F.12. MEETING 26-4-17 APPENDIX F. MEETING NOTES

F.12 Meeting 26-4-17

102

	Abstract
	Acknowledgements
	List of Figures
	Introduction
	The Group
	Thomas Magelssen Bergby
	Simon Chen Dybvik
	Nicolai Naglestad
	Espen Ottar Skjeggestad

	Employer
	Task
	Purpose
	Project delivery / Prototype
	Documentation
	Method

	Report structure
	Introduction
	Glossary
	Analysis
	Design
	Implementation
	Testing
	Discussion and Evaluation
	Conclusion

	Project Plan
	Main Deliveries
	Milestones

	Glossary
	MakerSpace
	Program tools
	MongoDB
	Node.js
	CRUD
	Postman

	Collaboration tools
	Git and GitHub
	Trello
	LaTeX

	Analysis
	The task
	Open Source
	MIT License
	MakerSpace Management System MIT License
	Security
	Cost
	Support and maintainability

	The Security Aspect
	Using existing systems (HTTP Auth, OAuth2, Etc.)
	Custom system
	Internet vs Intranet

	The Technology
	Front-end
	JavaScript / jQuery
	HTML5 / CSS3
	PHP7

	Back-end
	MongoDB
	Node.js / Mongoose
	REST API
	Linux Apache

	Users
	User Stories

	Design
	What is already out there?
	Site layout
	MongoDB Models
	Items
	Node.js Model
	JSON Model

	Category
	Node.js Model
	JSON Model

	Tag
	Node.js Model
	JSON Model

	Location/Locale
	Node.js Model
	JSON Model

	Implementation
	Flowcharts
	First iteration
	Website (Front-end)
	Design
	Technology

	Node.js API (Back-end)

	Second iteration
	Website (Front-end)
	Back-end

	Third iteration
	Website (Front-end)
	General changes
	Search field
	Item page
	Administrator page

	Back-end

	Fourth iteration
	Website (Front-end)
	General changes
	Item page
	Administrator page

	Back-end

	Testing
	Why do a user test
	Test goal
	Methods
	Usability Testing

	Target Audience
	User Types
	Student
	Student Assistant
	Employee / Admin of MakerSpace

	Test Execution
	Roles
	User
	Test Leader

	Setup
	Tasks
	After interview?

	Results
	Interview

	Discussion and Evaluation
	Design
	Implementation
	Usability Test
	The Project Method
	Future
	Front-end
	General Design
	Design Item page
	Implement new functions

	Back-end

	Conclusion
	9 Bibliography
	Raw Test Results
	API Calls and Output
	Getting all items
	Get a single item
	Updating a item
	Deleting a item
	Creating a item

	Project Contract
	Group Contract
	Confirmation of Group Change
	Meeting notes
	Meeting 24-1-17
	Meeting 31-1-17
	Meeting 1-2-17
	Meeting 7-2-17
	Meeting 14-2-17
	Meeting 21-2-17
	Meeting 28-2-17
	Meeting 28-2-17
	Meeting 14-3-17
	Meeting 21-3-17
	Meeting 4-4-17
	Meeting 26-4-17

